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Abstract

Concern over the validity of statistical tests performed on data

that may not satisfy underlying assumptions has prompted methodological

researchers to perform Monte Carlo studies for frequently used tests.

Unfortunately, these studies appear to have had little impact on

methodological practice. One reason is the lack of an overarching

framework to guide the interpretation of Monte Carlo studies for the same

test. Another is the impressionistic nature of these studies, which can

lead different readers to different conclusions. These shortcomings can

be addressed using quantitative methods of research synthesis (e.g.,

meta-analysis) to summarize the results of Monte Carlo studies for a

statistical test. In this paper, these methods are applied to a sample

of Monte Carlo studies of the F-test in the oneway fixed-effects ANOVA

model. The results provide empirical support for the robustness of the

type I error rate of the F-test to certain assumption violations.

However, the type I error rate of the F-test was noticeably affected by

unequal variances, even when sample sizes were equal. Recommendations

for using this test when certain as' mptions are violated are made.
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Summarizing Monte CaLlo Results in Methodological Research:

The Oneway Fixed-Effects NOVA Case

Introduction

An ongoing concern of quantitative methodologists is the validity of

statistical tests performed on data that may not satisfy underlying

assumptions (e.g., normality of a population score distribu' .4. These

concerns have been heightened by recent work suggesting that the bulk of

educational and psychological data are at least moderately and sometimes

strikingly nonnormal (Micceri, 1989). Micceri's work is evidence of the

usefulness of statistical tests which are insensitive to assumption

violations, i.e., whose type I error properties are not deleteriously

affected. Tests which are insensitive to assumption violations are

considered to be robust; tests which are not robust are less useful.

A large number of MC studies of particular statistical tests are

available in the methodological research literature. Unfortunately,

these results lack an overarching framework to guide their

interpretation. In addition, the impressionistic nature of MC results

makes it possible for different readers to reach different conclusions.

These shortcomings can be addressed by using quantitative methods of

research synthesis (e.g., meta-analysis) (Harwell, 1990): the goal is to

quantitatively summarize the results of MC studies for a statistical test

in a way that generates guidelines for using that test under specific

assumption violations. This would also permit the results of previous

statistical analyses using that test to be evaluated.

The purpose of this paper is to apply the meta-analytic framework
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illustrated in Harwell (1990) to summarize the results of a sample of MC

studies of the F-test in the oneway fixed-effects ANOVA model. The paper

is organized following the framework illustrated in Cooper (1982) and

used in Harwell (1990). Only the type I error case is examined in this

paper.

First, previous attempts to summarize MC studies of the F-test in

the oneway fixed-effects ANOVA model are briefly reviewed. The need to

complement qualitative summaries of MC studies with quantitative methods

is emphasized. Next, data collection procedures and issues are

discussed. Then, data evaluation procedures which are used to ensure

accurate coding and data entry are discussed. Finally, the MC data is

analyzed and the results interpreted. These results inform

methodological practice by generating guidelines for using the F-test in

the oneway fixed-effects ANOVA model under specific assumption

Problem Formulation

A number of MC studies of the F-test are available in the

methodological research literature. However, previous attempts to

summarize these results have been namAtive in nature and have lacked an

overarching framework to guide their interpretation. These shortcomings

can be addressed using methods conceptualized by Glass (1976), who

suggested using standardized mean differences (i.e., eUect magnitudes)

as a way of summarizing study results. In the present context, the

empirical proportions of rejections (i.e., empirical type I errors) serve
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as effect magnitudes (EMs) (Harwell, 1990). The goal of these methods is

to produce an empirical network of MC results which will generate

guidelines for the use of the F-test under specific assumption

violations.

The F-test was selected for two reasons. First, comparing the meta-

andlytic results to known theoretical and empirical results for this

popular test permits the usefulness of the meta-analytic methods to be

evaluated. Second, these methods will be used to investigate the effect

of heterogeneous variances on the F-test when sample sizes are equal.

Recent MC evidence (e.g., Tomarken & Serlin, 1987) cast doubt on the oft-

cited conclusion of Glass, Peckham, and Sanders (1972) that, in the

presence of equal samples, there is a "very slight effect on a [the

nominal type I error rate], which is seldom disturbed by more than a few

hundredths".

Data Collection

Selection of Studies

A population of MC studies of tha F-test in the oneway fixed-effects

ANOVA model was identified by searching the ERIC data base, Dissertation

Abstracts International, and the Current Index to Statistics. Key words

used to locate relevant studies foliov: ANOVA, distribution-free,

Kruskal=Wallis, Monte Carlo, nonnormality, nonparametric, power, ranks,

robustness, simulation, t-tests, Type I error rate, Wilcoxon, and Welch.

The literature search yielded approximately thirty journal articles and

four dissertations that appeared to be accessible.

Searching large data bases does not ensure that all relevant studies
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will be identified. For example, MC results reported in unpublished

technical reports and master's theses are likely to be underepresented or

missed completely. Under these conditions, the MC studies included in

the meta-analysis may differ in some important way from those not

included. The nature of MC studies, however, makes it probable that the

potentially nonrandom sample of MC studies of the r --test is

representative of the specified population.

The small number of accessible studies yielded by the literature

search led to the decision to use every available study in the meta-

analysis. Note that one or more study selection biases may be introduced

if the identified population of studies are not representative of the

entire population of MC studies of the F-test in the oneway fixed-

effects ANOVA model (Harwell, 1990).

The present analyses were based upon MC studies reported in twenty-

one of the thirty journal articles. These articles are listed in

appendix A. The data reported in the remaining articles and the

dissertations are not yet available for statistical analysis. Hence the

conclusions in this paper are preliminary and could change with the

inclusion of the remaining MC studies.

Next, the twenty-one MC studies were screened for serious

methodological flaws. The fact that all twenty-one studies were

published in refereed journals provides some protection. In addition,

each study was examined for inconsistent or unusual procedures and

results using the fol.lowing criteria: a) how the data were generated

(e.g., random number generator used), b) evidence of the success of the

data generation (e.g., skewness and kurtosis statistics computed for the
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simulated data), and c) the pattern of empirical type I error results

when underlying assumptions of the F-test were satisfied (e.g., whether

the empirical type I error rate of the F-test converged toward the

nominal value as sample size increased if all assumptions are satisfied).

No irregularities were noted and thus all twenty-one studies were judged

to be methodologically sound.

Coding of Outcome and Explanatory Variables

The outcome variable for the meta-analysis was type I error rate.

This variable was coded directly. Only results associated with a nominal

level of .05 were coded. Several characteristics of the MC studies were

coded as exp2anatory (i.e., predictor) variables. They are listed below:

(1) type of population score distribution

normal (71 = 0, 72 = 0)
uniform (71 = 0, 72 = -1.12)
double-exponential (71 = 0, 72 = 3)
log-normal (71, 72 depend on the parameters used)
Cauchy (71 = 0, 72 undefined)
exponential eft = 21 72 = 6)
logistic (71 = 0, 72.= 4.2)
t (71 = 0, 72 = v/(v-4), v = error degrees of freedom)
mixed normal (71, 72 defined for each application)
other [the other category includes the binomial distribution

("ft, 72
depend on the proportion of successes and sample size) and
Poisson distribution (71, 72 depend on parameter specified)

(2) number of groups

(3) total sample size
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(4) ratio of largest to smallest sample size

1 = 1 (sample sizes equal)
2 = > 1 and <1.25
3 = > 1.25 and < 1.5
4 = > 1.5 and < 1.75
5 = > 1.75 and < 2.0
6 = > 2.0 and < 3
7 = > 3 and < 5
= > 5

(5) ratio of largest to smallest variance

1 = 1 (all variances equal)
2 = > 1 and < 2
3 = > 2 and < 3
4 = > 3 and < 5
5 = > 5 and < 8
6 = > 8

(6) pairing of sample size and

1 = positively correlated
sample sizes)

2 = negatively correlated
samples)

3 = other

variance

(e.g., large variances paired with large

(e.g., large variances paired with smaller

(I) number of samples (replications)

The population score distribution information was captured by coding

skewness (71) and kurtosis (72) values (Kendall & Stuart, 1977, Vol. I,

pp. 187-189). The 71 and i2 indices for the unimodal but skewed and

kurtic lognormal distribution depend on the selected parameters and hence

two MC studies employing a lognormal distribution may be examining quite

different distributions. Similarly, the 71 and 72 indices for the

binomial and Poisson distributions depend on the parameters specified in

the MC study and if this information was not reported, which was often

the case, these indices could not be coded. The kurtosis associated with
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a Cauchy distribution could not be coded since the variance theoretically

does not exist.

The selection of ranges for coding the pattern of sample sizes and

the pattern of variances was guided by conditions reported in the sample

of MC studies. The number of replications variable is the number of

randomly generated samples upon which the empiral type I error values

are based. This variable was coded since it is related to the magnitude

of sampling error of the empirical proportions of rejections.

Data Evaluation

Accuracy of Coding and Data Entry

A three phase process was used to ensure that the characteristics of

each MC study were accurately coded and correctly entered into a computer

data file in preparation for statistical analysis. In an initial

training phase, two of the twenty-one MC studies were reviewed and coded

by all four authors. The structure of one of these studies was

relatively simple and t 1 other was more complex. Coding forms based on

the above coding scheme were completed for each study by each author.

The completed coding forms were then compared. Instances of uncertainty

or disagreement over particular characteristics of a MC study (e.g., how

sample sizes and variances were paired) were resolved by group consensus.

Information from this training phase was used to modify the coding forms.

In the next phase, eight of the twenty-one MC studies were equally

divided among two teams of coders, each made up of two of the authors.

The members of a team independently reviewed and coded each article
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assigned to them using the modified coding forms. Members of a team then

compared their results and attempted to resolve discrepancies among

themselves. Only a few instances of inconsistent coding were

encountered. Each of the remaining MC studies was coded by one of the

authors.

In the third phase, the coded MC data were entered into a computer

data file and then checked for accuracy. The twenty-one MC studies

generated approximately 553 lines of data (i.e., 553 EMs). The size and

complexity of the data set virtually guaranteed errors in data entry.

Two strategies were used to detect and correct data entry errors. First,

a computer printout of the entire data file was scanned in order to

detect obvious errors, e.g., type I error values falling outside an

expected range. Second, a comprehensive check was carried out by

randomly assigning the twenty-one articles to the four authors, having

each author read the articles assigned to them, and check the coded data.

Errors in coding and data entry detected in this fashion were then

corrected.

Data Analysis and Interpretation

The goal of quantitatively summarizing MC results for a particular

statistical test is to construct a statistical model that explains the
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Table 1 +@

Summary Statistics for Quantitative Variables
for the Sample of Monte Carlo Studies

Variable Cases Mean Median Stdev Minimum Maximum

TYPEI 553 .059 .050 .039 .004 .309
SKEW 1056 1.08 0 1.78 0 6.19
KURT 1056 11.14 0 28.4 -3.75 110.9
TOTALN 1225 45.4 32 43.5 8 750
REPS1 1070 4289.6 2000 4110.5 400 10,000

+ Cases = number of MC cases, Stdev = standard deviation.

@ Table 1 results include power values which were not consiuered in the inferential
analyses later

behavior of the:. statistical test as a function of study characteristics

(Harwell, 1990). Recall that available analytic and empirical evidence

of the behavior of the F-test will be directly compared against the meta-

analytic results. This will provide evidence about the usefulness of the

proposed methods. The relationrhip between heterogeneous variances and

type I error when sample si:ms are equal will also be investigated.

Descriptive Analyses

The first stage of the data analysis was descriptive in nature.

Statistics were computed for a variety of quantitative and qualitative

variables. Summary information on the sample of twenty-one MC studies is

given in Tables 1 and 2. The variables in these tables represent

empirical type I error values (TYPEI), skewness (SKEW), kurtosis (KURT),

total sample size (TOT1tLN)/ number of replications for the type I error

case (REPS1), number of replications for the power case (REPS2), number

of groups (NUMGRPS), ratio of largest to smallest samr..E. sizes (SAMPLE),

ratio of largest to smallest variances (VARIANCE), and pairing of sample
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Table 2 + @

Summary Statistics for Qualtitative Variables
for the Sample of Monte Carlo Studies

Type of P'ulation Score Distribution

Catagory Frequency *

Number of Groups

Catagory Frequency
Ncrmal 450 36.7 2 442 36.1
Uniform 30 2.4 3 194 15.8
Dbl. Exponential 20 1.6 4 520 42.4
Log-normal 133, 10.9 6 9 .7
Cauchy 20 1,6 8 60 4.9
Exponential 182 14.9 Total 1225 100
Logistic 16 1.3
t 15 1.2
Mixed-normal 67 5.5
Other 222 23.8
Total 1215 100

Ratio of Largest/Smallest Sample Size Pairing of Sample Size/Variance

Catagory Frequency I Catagory Frequency *
Equal 763 62.3 Other 1005 82
1-1.25 0 0.0 Pos. Corr. 124 10.1
1.25-1.5 49 4.0 Egg2!QICLL 96 7.8
1.5-1.75 0 0.0 Total 1225 100
1.75-2 11 .9
2-3 243 19.8
3-5 138 12.9
>5
Total

__1
1225

___-.1.

100

Ratio of Largest/Smallest Variance

Catagory Frequency %
Equal 878 71.7
1-2 119 9.7
2-3 42 3.4
3-5 87 7.1
5-8 39 3.2
>8 60 4.9

Total 1225 100

+ Dbl. exponential = double exponential, Pos. Corr. = positively
correlated, Neg. Corr. = negatively correlated.size and variance
(PAIRING).

@ Table 2 resNlts incude power cases which were not considered in the inferential analyses
12
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The rc.,Yllts in Table 1 indicate that the average type I error rate

across the sample of N = 553 type I error values was quite close to the

nominal value. A plot of the empirical TYPEI values appears in Figure

1. This distribution is noticeably skewed. Another interesting

statistic in Table 1 is the difference between the minimum and maximum

number of replications. This difference suggests results of varying

precision. Table 2 contains summary statistics for qualitative

variables.

Quantitative Analyses

To construct and evaluate explanatory models, a fixed-effects

regression model was fitted to the empirical type I error values (see

Hedges & Olkin, 1985, p.169). The fixed-effects regression models were

of the form

Pk = x1/31 X2 /32 + + Xxr PT , k=1,2,...,K

where pk is the k(th) EM which depends on a set of T fixed explanatory

variables )4m, and PT is a regression coefficient that captures the

relationship between the t(th) predictor variable and the k(th) EM (see

Harwell, 1990). In the present context, the empirical type I errors

served as the pi and the coded characteristics of the MC studies as the

YET.

Specified explanatory models were fitted to the EMs and a test of

the relationship between the set of T predictor variables and the pk was

performed using the weighted sum of squares due to regression statistic

13
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QR given in Hedges and Olkin (1985, p. 171). Under the hypothesis of no

relationship between the set of explanatory variables and the outcome

variable, QR is approximately distributed as a chi-square with T degrees

of freedom. The squared multiple correlation coefficient was used as an

index of the explanatory power of a model. A test of model

misspecification (i.e., whether all of the explanatory variables needed

to explain variation in the Pk are in the model) was performed using the

QE statistic, also given in Hedges and Olkin (1985, p. 173). Under the

hypothesis of no model misspecification, QE is approximately distributed

as a chi-square with K-T-1 degrees of freedom. All tests. used an error

rate of .05. Listwise deletion of missing data reduced the number of

cases used in the analyses.

Six explanatory models were investigated for the type I error case

using the SPSSX (1983) computer program. Each model is discussed below.

A summary of the results of the regression analyses appears in Table 3.

Examination of the residuals of each of the models indicated no

noticeable departures from normality. Note that all of the QR and QE

statistics in Table 3 are significant at p < .001 and are often quite

large. Despite the misspecification of all of the models, the multiple

R2 statistic appeared to be a useful index of the explanatory power of a

model.

Model 1

Model 1 investigated the relationship between type I errors and the

predictor variables SKEW, KURT, VARIANCE, TOTALN, NUMGRPS, SAMPLE, and

REPS1:

14
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Table 3 +

KODEL T Cases QR* QE* R2 Ream

la 7 416 2833.6 26181.6 .10 .08
lb 59 416 6786.9 22228.3 .23 .11

2a 5 416 2075.3 26939.9 .07 .06
2b 7 416 2833.6 26181.6 .10 .08

3a 6 416 2714.9 26300.3 .09 .08
3b 7 416 2833.6 26181.6 .10 .08

4a 7 416 2833.6 26181.6 .10 .08
4b 8 416 2872.9 26142.3 .10 .08

5a 7 149 2583.03 22429.5 .10 .06
5b 8 149 17909.3 7103.2 .72 .70
5c 7 76 4076.0 3179.2 .56 .52
5d 7 73 777.6 237.6 .77 .74

6a 5 195 1479.2 2440.2 .38 .36
6b 6 195 2658.9 1260.5 .68 .67

+ T = number of predictors, Cases = number of cases, Q11 is the weighted
sum of squares due to regression statistic, QE is a statistic testing
model misspecification, * means significant at p < .001, R2 is the
squared correlation between the set of predictors and the outcome
variabes, and R2,d,i is R2 adjusted for the number of predictors (see
Marascuilo & Serlin, 1988, p. 661).

model la

TYPEI = SKEW /31 + HURT /32 + VARIANCE /33 + TOTALN /34 + NUMGRPS /35 + SAMPLE&
+ REPS1 487

model lb

TYPEI = SKEW pi + KURT /32 + VARIANCE /33 + TOTALN /34 + NUMGRPS p5 + SAMPLE/36
+REPS1 137 + 52 predictors representing two-variable-at-a-time and
three-variable-at-a-time interaction effects

In model la seven predictor variables were fitted to the TYPEI

values. The results in Table 3 indicate that there is a statistically

significant relationship between the set of seven predictor variables

and TYPEI. However, the R2adj value of .08 suggests that the model
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possesses little explanatory power. This modest relationship supports

the commonly held notion that the type I error rate of the F-test in the

oneway fixed-effects ANOVA mod('. is robust. In the present context,

robustness would be indicated by a weak relationship between aset of

predictor variables and the outcome variable TYPEI. Model lb was used to

investigate the relationship between interactions of predictor variables

and TYPEI with the effects of the seven original predictor variables held

constant. Fifty-two predictors representing almost all possible two-

variable-at-a-time and three-variable-at-a-time interactions among the T

= 7 predictors in la were entered after the seven original predictors.

Collinearity problems prohibited four of the interactions from being

entered into the model. Although the increase in the QR statistic

between models la and lb (QR QR1a= 3953.3) is statistically

significant, the relatively small difference in the adjusted Res (.12)

suggests that the addition of the interaction effects only slightly

increased the explanatory power of the model. On the whole, the results

of model lb suggest that the type I error rate of the F-test is

relatively insensitive to multiple assumption violations.

Model 2

Model 2 was used to investigate the effect of the shape of the

population score distribution, as captured with skewness and kurtosis

indices, on type I errors. The models investigated were:

model 2a

TYPEI = VARIANCE /31 + TOTALN /32 + NUMGRPS /33 + SAMPLE 04 + REPS1
135
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model 2b

TYPEI = VARIANCE p. + TOTALN #2 + NUMGRPS /36 + SAMPLE /34 +REPS1 /36 +SKEW /36
+ KURT #7

Comparing the results for modals 2a and 2b indicates that the

QR 2b QR 2a difference was significant; however, the difference in the Res

suggests that type of population score distribution had little to do with

explaining variation in the type I errors. This result supports the

perception that the type. I error rate of the F-test is robust to

departures from the assumption of normality of a population score

distribution.

Model ?

The effect of the number of replications variable on type I errors

was investigated in model 3. The models were:

model 3a

TYPEI = VARIANCE /36 + TOTALN #2 + NUMGRPS /36 + SAMPLE /34 +SKEW /36 +KURT /36

model 3b

TYPEI = VARIANCE pi + TOTALN #2 + NUMGRPS /36 + SAMPLE /34 + SKEW )96 + KURT/36
+ REPS1 /37

The results in Table 3 indicate that, with the other predictors held

constant, number of replications had a negligable impact on type I errors

(R2adi 3b R2adi 3a - )

Model 4

In model 4 the possibility of a quadratic relationship between type
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I error and total sample size was investigated. The rationale was that,

other factors held constant, as sample size increases the type I error

rate should converge toward its nominal value, but there may be a point

beyond which larger samples contribute little to this convergence. The

models were:

model 4a

TYPEI = VARIANCE pi + TOTALN O2 + NUMGRPS Os + SAMPLE )94 + SKEW Os + KURTfl6
+ REPS1 )97

model 4b

TYPEI = VARIANCE pi + TOTALN Os + NUMGRPS p3 + SAMPLE )94 + SKEW Os + KURZ%
+ REPS1 p7 + TOTALN2 Os

The results in Table 3 suggests that there is no quadratic relationship

between sample size and type I errors.

Model 5

The relationship between pairing unequal sample sizes and variances

and type I errors was investigated in models 5a-5d. Theoretical and

empirical work suggests that the meta-analysis should detect a strong

relationship between the set of predictor variables (including PAIRILG)

and type I error. Models 5a and 5b were:

model 5a

TYPEI = SKEW 4 + KURT 4+ VARIANCE 4 + TOTALN + NUMGRPS 4 + SAMPLE Os
+ REPS1 )97

model 5b

TYPEI = SKEW 4 + KURT 4+ VARIANCE 4 + TOTALN )94 + NUMGRPS 4 + SAMPLE Os
+ REPS1 p7 PAIY..iNG 4

18
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The results of these analyses, reported in Table 3, provide strong

evidence of the relationship between type I error and pairing. Model 5a

produces an Rzadj = .06 which is similar to that of model la. Note,

however, that model 5 analyses are restricted to MC results examining t1,9

effects of pairing and thus are cased on a smaller sample. Model 5b

includes the pairing variable and produces an Rzadj = .70. The

R actin F k3 5, = .64 and QR5b %Set = 1S326.3 differences suggests a

strong relationship between type I errors and the pairing of unequal

sample sizes and variances, with the effe :ts of the other predictor

variables held constant. These results are consistent with theoretical

and previous empirical evidence (Glass et al., 1972).

Specific evidence about the role of sample size and variance

pairings were examined through models 5c and 5d. Model 5c investigated

the relationship between type I error and the predictors skewness,

kurtosis, number of groups, total sample size, and number of replications

but was restricted to MC data in which sample sizes and variances were

positively correlated, e.g., smaller samples paired with smaller

variances; model 5d investigated this relationship when samples and

variances were negatively correlated, e.g., larger samples paired with

larger variances. The models were:

model 5c (sample sizes/variances positively correlated)

TYPE' = SKEW /31 + KURT fl2 + TOTALN /33 + NUMGRPS 04 REPS1 /35

model 5d (sample sizes/variances negatively correlated)

TYPEI = SKEW /31 + KURT /32 + TOTALN /33 + NUMGRPS 04 REPS1 /35
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The results for mc'els 5c and 5d in Table 3 suggest a strong

relationship between type I error and the explanatory models for positive

and negative pairing of sample sizes and variances.

Model 6

Model 6 investigated the relationship between type I error and

heterogeneous variances when sample sizes are equal. All of the data

used in these analyses are based on equal sample sizes. The models were:

model 6a (equal sample sizes)

TYPEI = SKEW fl, + KURT /324' + TOTALN /33 + NUMGRPS )54 + REPS1

model (ib (equal sample sizes)

TYPEI = SKEW fl, + KURT /32 + TOTALN /33 + NUMGRPS /34 REPS1 /35 +VARIANCE /36

The adjusted R2 for model 6b (.67) and the difference R2ad3 6b 112ad3 6a =-35

suggests a strong relationship between variance inequality and type I

error even though sample sizes are equal. Further evidence of this

effect is provided by examining the type I error means for the variance

condition variable when sample sizes are equal. This information is

presented in Table 4. Variance ratios greater than 2 produce a

noticeably inflated type I error rate, a pattern that is exacerbated as
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Table 4

Average Type I Error Rates By Variance Ratios
For Equal Sample Sizes

VARIANCE

Equal 1-2 2-3 3-5 5-8 > 8

Mean .046 .051 .060 .064 .0i4 .079

N of cases 144 7 15 15 6 23

the variance ratio increases. This pattern persists even if the variance

condition is restricted to ratios < 5. In this case, analysis

of a model identical to 5b (not given) produced an leddi = .54. These

results sugests that equal samples provide little protection against

inflated type I error rates when variances are heterogeneous.

Conclusions

The results of the meta-analysis suggest the following conclusions:

1. The type I error rate of the F-test is insensitive to type of

population score distribution and relatively insensitive to

combinations of violations of assumptions.

2. There was no relationship between the number of replications and

type I errors, despite the large differences in these values across

studies.

3. There is no quadratic relationship between sample size and type I

errors.
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4. There is a strong relationship between inverse pairing of sample

sizes and variances and type I error. This extends to the case in

which sample sizes and variances are positively paired.

5. There is a moderate relationship between the st of predictor

variables and type I error when sample sizes are equal; for unequal

sample sizes there is only a weak relationship.

6. Equal sample sizes provide little protection against inflated type I

error rates when variances are heterogeneous. This pattern is

present for variance ratios < 5.

Summary

The application of quantitative methods of research synthesis to

summarize Monte Carlo results shows treat promise for informing

methodological practice. Construction of an empirical framework of Monte

Carlo studies of a statistical test should result in guidelines for the

appropriate use of particular statistical tests under specific assumption

violations. This will also permit previous statistical analyses to be

evaluated considering these guidelines.

The present results suggest that meta-analytic methods can usefully

be applied to summarizing Monte Carlo results of particular statistical

tests. The results support the commonly help perception of the

robustness of the type I error rate of the oneway fixed-effects ANOVA F-

test for a variety of conditions. Nonnormal population score

distributions, different sample sizes, numbers of groups, and unequal

sample sizes had little effect on type I errors. However, the results of

the meta-analysis provide new evidence that researchers should not rely
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on equal sample sizes to neutralize the effects of heterogeneous

variances. Under these conditions, the likely result is an inflated type

I error rate.

The next step in the process of deriving guidelines for using the F-

test when assumptions are violated is to tease out more specific

information from the explanatory models identified as being correlated

with type I errors. The goal would be to identify conditions (e.g.,

variance inequality and sample size) associated with specific type I

error values. This requires a more sophisticated methodology (e.g.,

response surface methodology). The same process should also be used to

investigate the relationship between various explanatory models and the

power of the F-test.
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